Exercise 2.3.5

(Dominance of the fittest) Suppose X and Y are two species that reproduce exponentially fast: $\dot{X}=a X$ and $\dot{Y}=b Y$, respectively, with initial conditions $X_{0}, Y_{0}>0$ and growth rates $a>b>0$. Here X is "fitter" than Y in the sense that it reproduces faster, as reflected by the inequality $a>b$. So we'd expect X to keep increasing its share of the total population $X+Y$ as $t \rightarrow \infty$. The goal of this exercise is to demonstrate this intuitive result, first analytically and then geometrically.
a) Let $x(t)=X(t) /[X(t)+Y(t)]$ denote X 's share of the total population. By solving for $X(t)$ and $Y(t)$, show that $x(t)$ increases monotonically and approaches 1 as $t \rightarrow \infty$.
b) Alternatively, we can arrive at the same conclusions by deriving a differential equation for $x(t)$. To do so, take the time derivative of $x(t)=X(t) /[X(t)+Y(t)]$ using the quotient and chain rules. Then substitute for \dot{X} and \dot{Y} and thereby show that $x(t)$ obeys the logistic equation $\dot{x}=(a-b) x(1-x)$. Explain why this implies that $x(t)$ increases monotonically and approaches 1 as $t \rightarrow \infty$.

Solution

Part (a)

Solve the initial value problems for $X(t)$ and $Y(t)$.

$$
\begin{array}{ll}
\frac{d X}{d t}=a X, \quad X(0)=X_{0} & \frac{d Y}{d t}=b Y, \quad Y(0)=Y_{0} \\
\frac{d X}{d t}=a & \frac{\frac{d Y}{d t}}{Y}=b \\
\frac{d}{d t} \ln |X|=a & \frac{d}{d t} \ln |Y|=b \\
\ln |X|=a t+C_{1} & \ln |Y|=b t+C_{2} \\
|X|=e^{a t+C_{1}} & |Y|=e^{b t+C_{2}} \\
X(t)= \pm e^{C_{1}} e^{a t} & Y(t)= \pm e^{C_{2}} e^{b t} \\
X(t)=A_{1} e^{a t} & Y(t)=A_{2} e^{b t}
\end{array}
$$

Apply the initial conditions to determine A_{1} and A_{2}.

$$
X_{0}=A_{1} \quad Y_{0}=A_{2}
$$

Therefore,

$$
X(t)=X_{0} e^{a t} \quad Y(t)=Y_{0} e^{b t}
$$

Let $x(t)$ be the population fraction of species X.

$$
x(t)=\frac{X(t)}{X(t)+Y(t)}=\frac{X_{0} e^{a t}}{X_{0} e^{a t}+Y_{0} e^{b t}}=\frac{X_{0}}{X_{0}+Y_{0} e^{b t} e^{-a t}}=\frac{X_{0}}{X_{0}+Y_{0} e^{(b-a) t}}
$$

Since $b-a<0$, the denominator gets smaller and smaller as t increases, meaning that $x(t)$ increases monotonically. In fact, $x(t)$ goes from

$$
\lim _{t \rightarrow 0} x(t)=\frac{X_{0}}{X_{0}+Y_{0}} \quad \text { to } \quad \lim _{t \rightarrow \infty} x(t)=\frac{X_{0}}{X_{0}}=1 .
$$

Part (b)

Begin with the population fraction of species X.

$$
x(t)=\frac{X(t)}{X(t)+Y(t)}
$$

Differentiate both sides with respect to t.

$$
\begin{aligned}
\frac{d}{d t}[x(t)] & =\frac{d}{d t}\left[\frac{X(t)}{X(t)+Y(t)}\right] \\
\dot{x}(t) & =\frac{\left[\frac{d}{d t} X(t)\right][X(t)+Y(t)]-\left\{\frac{d}{d t}[X(t)+Y(t)]\right\} X(t)}{[X(t)+Y(t)]^{2}} \\
& =\frac{\dot{X}(t)[X(t)+Y(t)]-[\dot{X}(t)+\dot{Y}(t)] X(t)}{[X(t)+Y(t)]^{2}} \\
& =\frac{\dot{X}(t) Y(t)-\dot{Y}(t) X(t)}{[X(t)+Y(t)]^{2}} \\
& =\frac{[a X(t)] Y(t)-[b Y(t)] X(t)}{[X(t)+Y(t)]^{2}} \\
& =\frac{(a-b) X(t) Y(t)}{[X(t)+Y(t)]^{2}} \\
& =(a-b) \frac{X(t)}{X(t)+Y(t)} \frac{Y(t)}{X(t)+Y(t)} \\
& =(a-b) \frac{X(t)}{X(t)+Y(t)}\left[1-\frac{X(t)}{X(t)+Y(t)}\right] \\
& =(a-b) x(t)[1-x(t)] \\
& =(a-b) x(1-x)
\end{aligned}
$$

As $t \rightarrow \infty$, the population of species X reaches equilibrium, that is, $\dot{x}=0$ as $t \rightarrow \infty$.

$$
\begin{aligned}
& (a-b) x^{*}\left(1-x^{*}\right)=0 \\
& x^{*}=0 \quad \text { or } \quad x^{*}=1
\end{aligned}
$$

Since $0<x(0)<1$ and $a-b>0, \dot{x}$ is always positive, meaning x grows monotonically and approaches 1 as $t \rightarrow \infty$.

